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Abstract

Background: The yeast ribosomal protein Asc1 is a WD-protein family member. Its mammalian ortholog, RACK1 was initially
discovered as a receptor for activated protein C kinase (PKC) that functions to maintain the active conformation of PKC and
to support its movement to target sites. In the budding yeast though, a connection between Asc1p and the PKC signaling
pathway has never been reported.

Methodology/Principal Findings: In the present study we found that asc1-deletion mutant (asc1D) presents some of the
hallmarks of PKC signaling mutants. These include an increased sensitivity to staurosporine, a specific Pkc1p inhibitor, and
susceptibility to cell-wall perturbing treatments such as hypotonic- and heat shock conditions and zymolase treatment.
Microscopic analysis of asc1D cells revealed cell-wall invaginations near bud sites after exposure to hypotonic conditions,
and the dynamic of cells’ survival after this stress further supports the involvement of Asc1p in maintaining the cell-wall
integrity during the mid-to late stages of bud formation. Genetic interactions between asc1 and pkc1 reveal synergistic
sensitivities of a double-knock out mutant (asc1D/pkc1D) to cell-wall stress conditions, and high basal level of PKC signaling
in asc1D. Furthermore, Asc1p has no effect on the cellular distribution or redistribution of Pkc1p at optimal or at cell-wall
stress conditions.

Conclusions/Significance: Taken together, our data support the idea that unlike its mammalian orthologs, Asc1p acts
remotely from Pkc1p, to regulate the integrity of the cell-wall. We speculate that its role is exerted through translation
regulation of bud-site related mRNAs during cells’ growth.
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Introduction

Asc1p is a member of the WD-40 repeat protein family that

adopts a seven-bladed b-propeller structure [1,2]. It was also

observed to be a genuine ribosomal protein [1–5], with this

function conserved from yeast to human. A cryo-EM study

mapped Asc1, as well as its human ortholog, RACK1, to the small

ribosomal subunit head region near the mRNA exit tunnel [1].

RACK1 was initially cloned from rat brain cDNA library as an

intracellular Receptor for Activated Protein C Kinase [6], with

PKCbII being the preferred binding partner [7,8,9]. Interaction of

PKC with RACK1 is thought to hold PKC in an active

conformation and to target PKC to appropriate intracellular

locations [8,10]. Later studies positioned RACK1 at a central

point for multiple cellular functions, as it was found to serve as a

scaffold protein for many component from diverse signaling

cascades [11–20], with some of them able to interact simulta-

neously with RACK1, and therefore allow it to integrate inputs

from distinct signaling pathways [21].

Based on these observations, it was suggested that RACK1, as a

part of the 40 S ribosomal subunit, serves as a docking site for

signaling molecules that regulate the activity of translation

initiation factors or recruit mRNA-binding proteins to the

ribosome [22]. Indeed, it was shown that the mammalian PKCbII

interacts with RACK1 while the last associates with translating

ribosomes, and that this interaction leads to phosphorylation of the

translation initiation factor eIF6, which induce translation

initiation [23].

The ability of mammalian RACK1 to compete for localization

to the yeast ribosome and to complement phenotypes of asc1

deletion mutant, suggest that these two proteins share similar

functions [5]. However, in yeast, the contribution of Asc1p to

mRNA translation is not clear. At optimal growth conditions

Asc1p is not essential, suggesting that this ribosomal protein is

dispensable for the general translation process. In addition,

connections between Asc1p and signaling pathways were only

recently established. Asc1p was shown to function as G-protein b
subunit for the Ga- Gpa1 protein, which is a part of the glucose-

stimulated cAMP/PKA signaling pathway, and to inhibit its

guanine-nucleotide exchange activity that is required for glucose-

signal transmission [24]. In addition, Asc1p was identified as a

possible component in the mating pheromone MAPK signaling

[25]. However, a connection between Asc1p and the PKC

signaling pathway in S.cerevisiae was never reported.
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In the present study, we investigated the relationship between

Asc1p and the PKC signaling pathway by following the

phenotypes of asc1-deletion mutant and its genetic interactions

with PKC1. We point Asc1p as a factor required for the integrity of

the cell-wall near the bud site, and suggest that this function is

independent of Pkc1p.

Materials and Methods

Yeast strains, plasmids and growth conditions
The following Saccharomyces cerevisiae strains were used: BY4741

(MATa; his3D1; leu2D0; met15D0; ura3D0), asc1D (MATa, his3D1

leu2D0 met15D0 ura3D0; asc1::kanMX4)(Euroscarf). pkc1D (MATa

leu2–3 112 ura3–52 trpl-1 his4 can1r, pkc1D::LEU2) and its isogenic

wild-type, EG123 (MATa leu2–3 112 ura3–52 trpl-1 his4 can1r),

were kindly provided by Dr. A. Tartakoff [26]. The double knock-

out strain asc1D/pkc1D was constructed by sporulation of the

mating products of asc1D and pkc1D strains, and selection for

germinated spores on synthetic complete media with geneticin

(G418) and without leucine. Correct construction of the strain was

further verified by Northern blot analysis [27]. The plasmid

PDL468 (pGAL-PKC1wt-HA, URA3, CEN) was kindly provided

by Dr. J. Gray [28], The plasmids PDL469 (pGAL-PKC1K853R-

HA URA3, CEN) and PBM743 (pGAL-PKC1R398A, URA3,

CEN) were kindly provided by Dr. A. Tartakoff [26], and the

plasmid PVD67 (pPKC1-PKC1-GFP, URA3, 2 m) was kindly

provided by Dr. M.S. Cyert [29].

Cells were grown at 30uC in YPD unless otherwise mentioned.

Plasmids were maintained by growing the cells in appropriate selection

media (Synthetic dropout with the necessary supplements). For

hypotonic shock conditions cells were grown in the presence of NaCl,

KCl, or Sorbitol at the specified concentrations, for about 24 hours to

logarithmic growth phase (OD600 0.6–0.8), collected at 4000 rpm for

3 minutes at room temperature, and resuspended in YPD media with

no supplemental osmolyte for the indicated time points.

Measuring yeast sensitivity to staurosporine
Yeast were grown over-night to logarithmic phase in YPD or

YPD supplemented with 0.8 M NaCl, and then diluted to

,100,000 cells/ml (OD600 of 0.01), in 500 ml of the same

medium. At the time specified in the Results section, each sample

was divided into two microfuge tubes, each containing 96 ml of

culture. The two cultures were supplemented with 4 ml of

1 mg/ml staurosporine (Sigma S3939)(final concetration

40 mg/ml), or with 4 ml of water. Growth was monitored

throughout the experiment by counting the number of cells with

hemocytometer.

Microscopic imaging
To observe cells before and after hypotonic shock treatment, 5 ml of

cells were fixed by 4% paraformaldehyde for 10 min and visualized by

an Olympus BX61TRF motorized microscope, equipped with a DP70

digital camera, using a 406 objective. To follow PKC1-GFP

localization, cells were fixed as described, and images were obtained

by a Nikon Eclipse 50i microscope with a 1006 immersion objective

and recorded by a Nikon DS-5M camera. Images were processed

digitally using Adobe Photoshop (Adobe Systems, Inc.).

Zymolase treatment
Cells were grown in YPD plus 1 M NaCl for ,24 hrs to mid-

logarithmic phase and concentrated to an OD600 of 5.0 in 2 ml

microfuge tube containing 1760 ml YPD supplemented with 1 M

NaCl, 200 ml 1 M DTT and 40 ml of 10 mg/ml Zymolase

(ImmunO). At the indicated time points, the turbidity of each

sample was measured immediately after the addition of 100 ml

aliquot from the reaction tube into a spectrophotometer cuvette

already containing 800 ml media and 100 ml of 10% SDS (final

conc. 1%), which rapidly lyse cells with severe cell-wall damages.

To follow Pkc1-GFP re-localization upon cell-wall stress, expo-

nentially growing yeast were cultured in the presence of 0.1 M

DTT and 0.2 mg/ml Zymolase for one hour.

Measuring effects of Pkc1p mutations on viability
Cells were grown to mid-logarithmic phase in medium lacking

uracil and in the presence of 2% glucose at 25uC. Cells were then

harvested by centrifugation at 4000 rpm for 4 min at room

temperature, washed once with water and diluted in water to a final

concentration of 104 cells/ml. 100 ml of each sample (,1000 cells)

Figure 1. asc1D is sensitive to a PKC inhibitor. Wild-type and asc1D cells were grown to mid-logarithmic phase in rich media (YPD) in the
absence (A) or in the presence of 0.8 M NaCl as an osmotic stabilizer (B), and diluted to concentrations of 105 cells/ml. At the indicated time points
(marked by black arrows) each culture was divided to two, and the two halves were supplemented either with staurosporine (+St) to a final
concentration of 40 mg/ml or with an equal volume of water. Cell growth was monitored before and after Staurosporine addition by counting the
cells’ number using a hemocytometer.
doi:10.1371/journal.pone.0011389.g001
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were seeded on plates lacking uracil and either containing 2% glucose

(no induction) or containing 2% galactose and 0.2% sucrose

(induction). Colony forming units (CFU) were counted after three

days of incubation at 25uC, and the average ratio for glucose/

galactose CFU was calculated from three independent repeats.

Cellular fractionation. Cellular fractionation was based on

the protocol of Frey et. al [30] for ER-membrane enrichment. Cells

were grown to mid-logarithmic phase in YPD media.

Cycloheximide was added to a final concentration of 0.1 mg/ml,

and cells were harvested (4000 rpm, 4 min, 4uC) and resuspended

Figure 2. Response of asc1D cells to cell wall stresses. The indicated strains were grown for 24 hrs at 30uC in liquid YPD media containing
0 M, 0.4 M, 1 M or 1.4 M NaCl (A) or in the presence of 1 M NaCl, 1 M KCl, or 1.5 M Sorbitol (B), or 0.5 M NaCl (C). To impose hypotonic shock, cells
were plated in a dilution series on YPD plates containing no supplemental osmolyte and grown either at 30uC (‘‘30uC, Hypotonic shock’’) or at 37uC
(‘‘37uC, Hypotonic shock’’). For isotonic control, cells were spotted in a dilution series on YPD plates containing the same osmolyte concentrations as
they grew in, and cultured at 30uC (‘‘30uC Control’’). Pictures of spotted colonies were taken after 24 hours (left panels) and 48 hours (right panels). To
impose calcoflour white stress cells were plated on plates supplemented with 0.5 M NaCl and the indicated calcoflour white concentrations.
doi:10.1371/journal.pone.0011389.g002
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in 400 ml of ice-cold membrane-fractionation buffer (20 mM

Hepes-KOH pH 7.6, 100 mM potassium acetate, 5 mM

magnesium acetate, 2 mM dithiothreitol, 0.1 mg/ml cyclohe-

ximide and 0.1 mM PMSF) either with or without additional

20 mM EDTA. After the addition of 1 ml glass beads, cells were

lysed by two rounds of vigorous vortexing for 90 seconds at 4uC with

bead-beater. Recovered lysates were centrifuged for 2 min at

1,2006 g to remove cell debris. The remaining crude lysate was

fractionated by centrifugation at 6,0006 g for 20 min at 4uC to

cytosol- containing supernatant, and ER membrane- containing

pellet [30]. Equivalent amounts of proteins from each fraction were

subjected to Western blot analysis.

Western blot analysis. Western analysis was performed as

previously described [31]. Anti-HA monoclonal antibody

(Covance MMS-101P) was used at a 1:4000 dilution. Rabbit

anti-Asc1p, generously provided by Dr. A. Link [5] was used

at 1:5000 dilution. Monoclonal anti-Pab1p antibody was a gift

from Dr. Mordechai Choder (Technion – Israel Institute of

Technology), and was used at 1:10000 dilution. Anti-Hexokinase-

HRP conjugated antibody was used at 1:50000 dilution and was

kindly provided by Michael Glickman (Technion – Israel Institute

of Technology). Anti-mouse IgG-HRP conjugated (Sigma A5906)

and Anti-rabbit IgG-HRP conjugated (Sigma A9169), were used

at 1:10000 dilution.

Figure 3. Hypotonicity cause rapid reduction in viability of dividing asc1D cells. Cells were grown in YPD supplemented with 1 M NaCl
either to logarithmic growth phase (A) or to stationary phase (B). Cells were then shifted to media without NaCl to create hypotonic shock. At the
indicated time points, dead cells were counted by Methylene Blue (MB) staining.
doi:10.1371/journal.pone.0011389.g003

Figure 4. asc1D cells display aberrant cell-wall morphologies upon exposure to hypotonic conditions. Microscopic observations of wild-
type and asc1D cells either under sustained growth in rich media (YPD) containing 1M NaCl (A, D), or following one hour exposure to hypotonic shock
conditions (shift from 1 M to 0 M NaCl containing YPD media)(B, E), or in hypotonic conditions in the presence of 0.1 mg/ml Cycloheximide (CHX) (C,
F). Arrows point to cell-wall deformations sites. Inset in E is a higher magnification of deformed cells.
doi:10.1371/journal.pone.0011389.g004
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Results

asc1D strain display phenotypic linkage with the PKC
signaling pathway

The mammalian ortholog of Asc1p (RACK1) acts as a receptor

for an activated PKCb isoform [6]. In yeast, the PKC signaling

pathway is activated in response to cell-wall stress conditions and

controls cell-wall integrity at all stages of cell growth. Accordingly,

mutations that interfere with this pathway result in hypersensitivity

to various cell-wall perturbing treatments. It is therefore expected

that if Asc1p function is directly or indirectly linked to PKC

signaling, then loss of asc1 gene will share similar phenotypes with

other mutations in the PKC pathway. To study this, we subjected

an asc1-deletion mutant (asc1D) to staurosporine, a protein kinase

inhibitor of which Pkc1p appears to be its primary target [32,33].

Following addition of staurosporine (40 mg/ml) to exponentially

growing yeast cultures, asc1D strain ceased to proliferate while its

parental strain was almost unaffected by the drug (Fig. 1A).

Significantly, this growth defect was suppressed by the addition of

an osmotic stabilizer (0.8 M NaCl) to the media (Fig. 1B), linking

the staurosporine sensitivity of asc1D to cell-wall defects resulting

from loss of Pkc1p activity.

Additionally, we examined asc1D sensitivity to hypotonic stress

and to elevated temperatures, two stimuli that damage the fluidity

of the cell-wall and activate the PKC signal transduction pathway

[34,35]. In order to test the growth response to different strengths

of hypotonic shock conditions, cells were grown at 30uC in rich

media (YPD) containing different concentrations of NaCl (0, 0.4, 1

or 1.4 M) and after 24 hours serially diluted and seeded on YPD

plates containing no NaCl (0 M) (Fig. 2A, left columns). The

growth response to elevated temperatures was tested by growing

the cells at 37uC (Fig. 2A, middle columns). Monitoring cell

growth after 24 and 48 hours demonstrates that following

exposure to extreme hypotonic shock conditions (from a 1 M

NaCl starting point or above) or to elevated temperature, asc1D
strain presents delayed resumption of growth and reduced

survival, as compared to the wild type strain. The effect on

growth was further enhanced when the two stress conditions were

combined, with the strongest sensitivity when external osmolarity

was reduced from 1 M to 0 M NaCl and growth temperature was

37uC (Fig. 2A dashed-line framed panel). To establish the

generality of the sensitivity to hypotonic stress, the same

experimental procedure was repeated using KCl and sorbitol

(Fig. 2B). Indeed, increased sensitivities to hypotonic conditions

and to combined heat shock were demonstrated after the cells

were grown with either of the osmolytes, showing that this effect is

not restricted to NaCl.

We have also examined the sensitivity of asc1D cells to calcoflour

white (CFW), a cell-wall damaging agent (Fig. 2C). asc1D cells are

much more sensitive to CFW than their parental strain (BY4741),

as can clearly be seen on the plates supplemented with 100 mg/ml.

As expected, cells deleted of Pkc1p are also sensitive to CFW and

this can be observed already at a concentration of 50 mg/ml. Note

that the parental strain of pkc1D (EG123) is much more sensitive to

CFW than the parental strain of asc1D (BY4741), hence the

difference is sensitivity between their progenies.

To follow the dynamics of the loss of viability upon hypotonic

shock, we stained asc1D with methylene-blue, a dye that stain

dead, or physically damaged cells [36,37], at different time points

after the cells were subjected to hypotonic shock. Interestingly,

while the parental strain remained resistant to methylene-blue

staining throughout the experiment, more than half of asc1D cells

were stained within one minute following the shift to hypotonic

conditions with no additional staining at the subsequent time

points (Fig. 3A). This result indicates that asc1D loss of viability

occurs immediately upon exposure to hypotonic treatment, which

is consistent with abrupt cell-wall damage. This effect was

extremely similar to the one observed for PKC1-deleted cells

(pkc1D). Yet, the survival of the pkc1D strain showed also constant

reduction in time (Fig. 3A) and eventually ended with a complete

loss of viability (data not shown). When the hypotonic shock was

exerted on cells at stationary growth phase, both asc1D and pkc1D
were highly resistance to the immediate effect on viability (Fig. 3B).

This shows that the two strains share similar vulnerability to

hypotonic shock during exponential growth.

Analysis of the cellular morphology of asc1-deletion strain before

and after shifting the cells to hypotonic media demonstrated notable

cell-wall invaginations that occurred mainly near the sites of the

emerging buds (Fig. 4). Importantly, the aberrant cell-wall

morphology was not linked to Asc1p effect on de-novo synthesis

of proteins in response to the hypotonic shock, because arresting the

translation process by Cycloheximide had no effect on the

morphology of asc1D and its parental strain during the hypotonic

stress (Fig. 4 compare C to B and F to E). Taken together, these

results indicate that Asc1p role in cell-wall metabolism is

concentrated mainly in budding sites. Unlike asc1D’s response,

pkc1D cells displayed severe deformations throughout the entire cell

contour upon exposure to hypotonic stress conditions (data not

shown). This comes in agreement with Pkc1p role in regulating and

maintaining the integrity of the cell-wall at all steps of cell-cycle.

Genetic interactions suggest that Asc1 and Pkc1 proteins
do not act in concert

To further establish the connection between Asc1p and the

PKC signaling pathway we tested the effect of two variants of Pkc1

protein on the survival of asc1D cells. asc1D and its parental strain

were transformed with plasmids that promote the expression of an

inactive (Pkc1K853R) or a constitutive-active (Pkc1R398A) kinase

mutants from a galactose-inducible promoter [32]. We determined

the effect of the Pkc1p variants on the viability of each strain by

comparing the number of colony forming units (CFU) on plates

containing an inducing or non-inducing sugar source (Fig. 5). Over

Figure 5. asc1D sensitivities to Pkc1 mutations. asc1D and its
parental strain carrying plasmids that express either wild-type (wt),
inactive (inact.) or constitutively-active (const.act.) forms of Pkc1p under
galactose-inducible promoter were grown to mid logarithmic phase in
non-inducing conditions (with glucose as a carbon source). The effect of
each Pkc1p variant on survival was determined by seeding equal
amounts of cells on plates containing either the inducing or the non-
inducing carbon source, and calculating the induced/non-induced ratio
for the colony forming units (CFU). All values were normalized to the
wild-type Pkc1, which was set to 100%. Note that the Y-axis is in
logarithmic scale.
doi:10.1371/journal.pone.0011389.g005
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expressing the wild-type Pkc1p showed no effect on cell survival, in

agreement with previous reports [28,32]. However, over-express-

ing the inactive or the constitutive-active mutants affected the

viability of asc1D and its parental strain differentially: asc1D cells

were highly resistance to the deleterious effect of the inactive

kinase mutation that was observed in the parental strain (,60% vs.

,2% viability, respectively), and showed increased sensitivity to

the constitutive-active form of Pkc1p (,0.15% vs. ,0.6% viability

in the parental strain). The simplest explanation for these

observations is that asc1D cells have higher intrinsic activity of

the PKC signaling pathway. The higher PKC activity therefore

partially overcome the dominant-negative effect of the kinase-dead

mutation and sum up with the constitutive-active mutant to

produce a higher toxic effect.

We further constructed a double knockout haploid strain

carrying deletions of both ASC1 and PKC1 genes (asc1D/pkc1D).

This strain showed no considerable change in growth rate

compared to single deletion mutants of asc1 and pkc1 (Fig. 6A)

and presented some of the pkc1D strain phenotypic hallmarks, such

as the existence of giant cells [38] (Fig. 6B), and the necessity for an

osmotic stabilizer for growth [35] (Fig. 6C). Yet, it displayed

synergistic sensitivities to some cell-wall perturbation treatments: It

was unable to grow at elevated temperatures even in the presence

of an osmotic stabilizer (Fig. 6C) and showed greater sensitivity to

Zymolase (e.g. see the 2.5 min time point at Fig. 6D). This

exaggerated sensitivity of the double knockout mutant may

indicate that Asc1 and Pkc1 proteins act through different

mechanisms to maintain the integrity of the cell-wall.

Asc1p has no effect on Pkc1p localization
One of the outcomes of PKCbII-RACK1 interaction in

mammalian cells is the targeting of PKCbII to specific

intracellular location, which vary between cell types [6,8,10]. To

study whether Asc1p affects the cellular localization of Pkc1p, we

fractionated lysates from wild-type and asc1D cells to their

membranous and cytosolic parts [30] and tested the distribution

of Asc1p and Pkc1p between the two compartments. Asc1p

appeared to be evenly distributed between the membranous and

the cytosolic fractions in wild-type cells (Fig. 7A), similarly as the

polysome-associated factor Pab1p. Pkc1p however, appeared

almost exclusively in the membranous part (Fig. 7A). This

association is independent of Asc1p, as it was unaffected by asc1-

gene deletion (Fig. 7A). Moreover, EDTA treatment, which leads

to disassembly of polysomes and consequently to the release of

Figure 6. Phenotypes of asc1D/pkc1D. A) The indicated strains were grown in rich media in the presence of 0.5 M NaCl to logarithmic growth
phase, and diluted to an OD600 of 0.1. Growth was monitored by measuring the OD600 values at the indicated time points. Results of one
representative experiment out of three are shown. B) Microscopic morphology of the indicated strains when grown in rich media plus 1 M NaCl. C)
Hypotonic shock sensitivity of the indicated strains. Cells were grown to mid-log phase in liquid YPD media supplemented with 0.5 M NaCl, serially
diluted and plated on YPD plates with or without 0.5 M NaCl. Pictures were taken after 48 hrs of incubation at 30uC. C) Cell were grown in liquid YPD
+0.5 M NaCl to mid-log phase, serially diluted and spotted on YPD plates either with no added NaCl, or with 0.5 M NaCl. Plates were incubated at
30uC or at 37uC. D) Sensitivity to Zymolase. Cells were grown in YPD +1 M NaCl to mid-logarithmic phase and concentrated to an OD600 of 5.0.
Samples were then treated with 0.2 mg/ml Zymolase, and at the indicated time points cell-wall sensitivity was determined by adding SDS (final
concentration 1%) and measuring the sample’s turbidity.
doi:10.1371/journal.pone.0011389.g006

Asc1 and Pkc1

PLoS ONE | www.plosone.org 6 June 2010 | Volume 5 | Issue 6 | e11389



Asc1p from the membrane part (Fig. 7A), did not change the

membrane association of Pkc1p.

We also followed the localization of a Pkc1-GFP fusion protein

that consists of the entire Pkc1p fused through its C-terminus to a

green fluorescent protein. Expressing Pkc1-GFP from a high-copy

plasmid in wild-type cells resulted in localization of this protein at

the bud tip in small- to medium-sized buds and at the bud neck in

large budded cells (Fig. 7B) as previously reported [29,39]. This

localization pattern was unaffected when the same fusion protein

was expressed in asc1D cells (Fig. 7B). Additionally, when wild-type

and asc1D cells were subjected to a Pkc1p-activating cell-wall stress

by Zymolase treatment, Pkc1-GFP proteins were re-localized

similarly in both strains, forming between five to ten distinct foci at

the cells’ periphery (Fig. 7B). Together, these results suggest that

Asc1p has no role in directing Pkc1p to its sites during the budding

process, or in the re-localization of Pkc1p during cell-wall stress.

Discussion

In mammalian cells RACK1 serves as a scaffold protein for

numerous components of diverse signal transduction pathways, of

which PKCbII is the most recognized [40]. In this study we show

that in the budding yeast, loss of the RACK1 ortholog gene, asc1,

results in phenotypes that characterize some PKC signaling

mutants. In particular, asc1D strain was sensitive to staurosporine

(Fig. 1), a specific inhibitor of Pkc1p in yeast [32,33], and showed

increased sensitivities to hypotonic- and heat shock conditions and

to Zymolase treatment (Figs. 2, 3, 4 and 6D). These are known to

provoke a cell-wall stress, which requires a functional PKC

signaling for cells to survive.

The dynamics of asc1D loss of viability, whereby more than half

of asc1D cells were damaged within the first minute of exposure to

hypotonic conditions, is highly similar to the response of pkc1D
strain (Fig. 3). However, unlike pkc1D strain that displayed

unchanged to slow reduction in viability after the initial drop in

survival, asc1D strain slowly resumed its growth. This may imply

that pkc1D sensitivity to hypotonic conditions involves two distinct

processes, of which asc1D susceptibility is linked only to the first,

immediate one. Indeed, Levin et al. have shown that PKC1-deleted

cells that possessed buds of any size underwent immediate lysis

upon transfer to medium lacking osmotic stabilizers, while non

budded cells arrested at the early stages of bud formation [35,41].

Therefore, whereas Pkc1p function is important to all stages of

bud formation Asc1p appears to have a role only in the mid-to late

stages of this process.

Several observations in this work suggest that Asc1p is

connected to Pkc1p by a different mechanism then in higher

eukaryotes. First, in mammalian cells, RACK1 serves as a scaffold

that mediates the phosphorylation and activation of the MAPK

JNK by PKCbII [42]. However, our data suggest that asc1D cells

contain high basal levels of PKC signaling (Fig. 5), which comes in

agreement with the hyper-phsphorylation of the terminal MAPK,

Slt2/Mpk1p, in asc1D background [25]. This observation raises

the possibility that the PKC signaling is activated in asc1D strain to

compensate for its cell-wall sensitivity due to loss of function of

other mechanism. Second, in mammalian cells PKCbII-RACK1

interaction appears to target PKCbII to distinct intracellular

locations, which vary between different cell types [6,8,10]. In

yeast, full-length Pkc1p appears to reside predominantly at the

bud-neck of medium to large sized buds and at the tip of small-

sized buds, and to become re-localized to the cell’s periphery upon

exposure to cell-wall stress [29,39]. Our results show that loss of

Asc1p has no effect on Pkc1p localization at steady-state growth

conditions nor on its re-distribution after cell-wall stress (Fig. 7B),

and has no influence on Pkc1p fractionation with membrane-

compartments (Fig. 7A). Third, while a physical interaction

between Asc1 and Pkc1 proteins cannot be ruled out, we were

unable to support these by two hybrid analyses or co-immuno-

precipitation (data not shown). Moreover, the genetic interactions

between the two genes suggest that they do not act in the same

pathway. Specifically, double-knockout mutant lacking both asc1

and pkc1 genes displayed synergistic sensitivities to cell-wall stress

conditions (Fig. 6C, D). Taken together, our observations suggest

that in S.cerevisiae, Asc1p contribution to cell-wall integrity is not

through the conventional Bck1-Mkk1/2-Mpk1 MAPK module

that acts downstream to Pkc1p. Rather, Asc1p appears to function

in parallel to Pkc1p, or to coordinate between the PKC signaling

pathway and other cell-wall integrity related mechanisms, to the

most.

How might Asc1p affect the integrity of the cell-wall? A likely

mechanism is by regulating the translation of mRNAs that encode

for cell-wall proteins. Indeed, mutations in Asc1p that were shown

to reduce its ability to associate with ribosomes, resulted in also

increased sensitivity to calcofluor white, a cell-wall perturbing

agent [2]. Based on the immediate lysis of asc1D cells upon

Figure 7. Asc1p has no effect on Pkc1p localization. A) Extracts of
either wild-type (WT) or asc1D strains expressing HA-tagged Pkc1p
were fractionated to membrane pellet (M) and cytosolic supernatant
(C). The procedure for the WT strain was performed either in the
absence or in the presence of 20 mM EDTA. Equivalent amounts of an
unfractionated sample (T), cytosolic (C) and membranous (M) samples
were subjected to Western analysis with antibodies recognizing the HA
moiety of PKC1 or Asc1p. Pab1p (detected by a-pab1 antibody) was
used as a marker for polysomes-associated factor, and Hxk1p (detected
by a-Hxk1p antibody) was used as a cytosolic marker. B) Pkc1p-GFP was
visualized in wild-type and asc1D cells grown to mid-log phase either
without (‘‘no stress’’) or with one hour treatment with Zymolase
(‘‘Zymolase stress’’).
doi:10.1371/journal.pone.0011389.g007
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hypotonic shock conditions (Fig. 3) that was independent of de-

novo synthesis of proteins (Fig. 4), we suggest that regulation of

translation by Asc1 is exerted on bud-site related mRNAs during

steady-state growth, rather than in response to cell-wall stress.
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